
216 Inorganic Chemistry, Vol~ 14, No. I, 1975 Correspondence 

face and the mer isomer (29, obtained from P by switching a 
ligand end for end. 
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Isomerism in Complexes of Bidentate Meso Chelates 
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Sir: 
The possibility of a, /? (or facial, meridional) isomerism in 

octahedral complexes of unsymmetrical bidentate ligands is 
well known.1 However, that a similar type of isomerism is 
possible in octahedral complexes of meso chelates, whose halves 
are distinguishable by their chirality (in the simplest case, R 
and S ) ,  has generally gone unrecognized.2 Thus, recent 
papers3?4 interpreting pmr spectra of Ni(ms-bn)32+ (bn = 
2,3-diaminobutane) have failed to consider the possible 
presence of two diastereomers-the fac isomer (1) with 
dissymmetric sites of only one chirality about each trigonal 

B 2 

The distinction between the two isomers is not a trivial one 
nor is their interconversion. Molecular models show a sig- 
nificant difference between the proton environments in fac- 
and mer-Ni(ms-bn)32+, The fac isomer, apparently the only 
one considered to date in pmr spectral interpretations for these 
and similar complexes,42 has C3 symmetry (ignoring ligand 
conformation) and contains two magnetically nonequivalent 
sets of three methyl groups (or methine protons) each. The 
nonequivalence of the two methyl groups of a chelate in 
f~c-Wi(ms-bn)3~+ is easily explained since the R and S dis- 
symmetric centers must be chemically distinct in the overall 
A or A dissymmetry of the complex. In the mer isomer (Cl 
symmetry), all methyl groups and ai1 methine protons are 
magnetically nonequivalent. 

Though the room-t,emperature pmr spectrum of Ni(ms- 
bn) 32-+ solutions can be interpreted assuming only the presence 
of the fac isomer, the extreme broadness reported for the 
spectral peaks may indicale a mixture of fac and mer.4 
Molecular models indicate slightly more favorable nonbonded 
contacts in fac-Ni(ms-bn)32+; however, the mer isomer has 
a statistical entropy contribution of R In 3 to its stability.6 Thus 
the temperalure-dependent pmr studies reported4 for Ni- 
( m s - b n ) P  may, in fact, be affected by the presence of a 
temperatuse-dependent diastereomer equilibrium. 

In their pioneering paper on ligand conformation,7 Corey 
and Bailar, likewise, failed to notice the unique symmetry 
properties of meso chelates when they started that “even though 
a,  isomerism does not exist, there are 20 possible isomers 
of the ion [Co(~tien)3]3+’~ (stien = stilbenediamine). Isomer 
enumeration by literature methodss.9 for a system of RR, SS, 
and RS tris chelates shows that there are actually 32 isomers 
possible. Neglecting A, h isomerism, there are two structures 
each for the complexes Co(ms-stien)33+ and Co(d-stien)(l- 
stien)(ms-stien)3+ and three structures each for the complexes 
Co(d-stien)(ms-stien)z3+ and Co(1-stien)(ms-stien)23$. 

Isomers similar to those discussed above for an octahedral 
geometry are also possible for square-planar and tetragonal 
systems, where chelate ends of the same chirality may be either 
cis or trans. The presence of such isomers may explain some 
of the variations observed in (ms-stien)zNiII and related 
complexes.loIl1 Appleton and Hall have recently proposed 
cis-trans structures for two isomers of square-planar bis- 
(r~zeso-pentane-2,4-diamine)platinum(II) . I *  
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Single Ground State in the Oxygen-Inactive Form of 
N,N'-Ethylenebis(salicy1ideniminato)cobalt (11) 

AIC40472 1 

Sir: 

The crystal and molecular structure of the oxygen-inactive 
form of N,N'-ethylenebis(salicylideniminato)cobalt(II), 
[Co(salen)]z, has been determined.lJ The X-ray analyses show 
the cobalt to be five-coordinate with a square pyramidal 
arrangement of ligand molecules. The molecules are dimeric 
with out-of-plane bonds between the cobalt atoms and phenolic 
oxygen atoms as shown in Figure 1. The out-of-plane co- 
balt-oxygen distance is 2.259 A. 

Earlier investigators determined the high-temperature 
(90-400°K) dependent magnetic susceptibility for this 
compound, and the results are both interesting and contro- 
versial. In 1946 Calvin and Barkelew3 measured the magnetic 
susceptibility over the temperature range 102-400°K by the 
Gouy method, and their rather extraordinary magnetic results 
are shown in Figure 2.  Since no crystal transition had been 
observed for the compound over the temperature range in- 
vestigated, Calvin and Barkelew attributed the unusual 
magnetic behavior to crystal field splitting caused by symmetry 
of rhombic or lower order. In 1959, with more sophisticated 
cryomagnetic equipment than that of Calvin and Barkelew, 
Figgis and Nyholm4 measured the magnetic susceptibility over 
the range 90-300'K. For comparison, their results are also 
shown in Figure 2 .  The small curvature in the susceptibili- 
ty-temperature curve was attributed to the presence of a small 
TIP  term, of the order of 60 X 10-6 cgsu/mol, in the sus- 
ceptibility. The two sets of data are in agreement at 300°K 
with each giving a magnetic moment of approximately 2.25 
BM; however, the temperature dependence of each set is quite 
different. The limited temperature range over which these 
investigations were made and the nature of the magnetic data 
render the significance of their measurements doubtful. We 
have therefore measured the magnetic susceptibility over the 
temperature range of about 10-300°K and now report the true 
magnetic character of the compound. Our measurements were 
made using a Foner-type vibrating-sample magnetometers 
operated at a field strength of 10,000 Oe and calibrated with 
a sample of very pure nickel metal and with HgCo(NCS)4.6 
Temperature measurements were obtained with a precision 
germanium resistor and a high-impedance ac resistance bridge. 
The experimentally determined susceptibilities were corrected 
for the diamagnetism of the constituent atoms using Pascal's 
constants.7 

The dramatic feature of our magnetic data is a pronounced 
maximum of the magnetic susceptibility near 34°K. This 
behavior indicates that the ground electronic state is of singlet 
multiplicity with a relatively small energy difference existing 
between this state and the paramagnetic triplet state. The 
temperature variation of the magnetic susceptibility is shown 
in Figure 3. 

With the assumption that these two electronic states (singlet 
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Figure 1. Schematic of the dimer [Co(salen)], 
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Figure 2. The magnetic results of Calvin and Barkelew (0) and of 
Figgis and Nyholm (An). 
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Figure 3. Plot of magnetic susceptibility )is. temperature for [Co- 
(salen)], . The triangles represent the  experimental data  while the 
solid line represents the least-squares best fit t o  the Van Vleck equa- 
tion. 

ground state and low-lying triplet state) are sufficiently 
separated from other excited states such that the Van Vleck 
equation (eq l)S,9 applies, we have compared the data to the 

x = [Ng2p2/3kT][1 + (1/3) exp(-2J/kr)]-' (1 1 
equation and find, from the best fit of experimental and 
calculated susceptibilities as determined by the minimum 
least-squares deviation, that J = -20.0 cm-1 and g = 2.41. As 
noted in Figure 3 the fit is very good; the average per cent 
deviation between the 52 experimental susceptibilities and those 
calculated using the best-fit parameters is only 2.7%. It is well 
known that effects such as spin-orbit coupling and crystal fields 


